INTRODUCTORY NOTE
MICHAEL FARADAY was the son of a blacksmith, and was born at Newington Butts, near London, September 22, 1791. He began life as an errand boy to a bookbinder and stationer, to whom he was later bound apprentice. After eight years in this business, he was engaged by Sir Humphry Davy as his laboratory assistant at the Royal Institution, and in 1813-15 he traveled extensively on the Continent with his master, and saw some of the most famous scientists of Europe. Shortly after his return to the Royal Institution, he began to make contributions of his own to science, his first paper appearing in 1816. He became director of the laboratory in 1825, and professor of chemistry in 1833; rising rapidly, through the number and importance of his discoveries, to a most distinguished position. But he was working at too great pressure, and in 1841 his health gave way, so that for some three years he could not work at all. He recovered, however, and made some of his most important discoveries after this interruption; and was offered, but declined, the presidency of both the Royal Society and the Royal Institution. He died August 25, 1867.
It was characteristic of Faraday's devotion to the enlargement of the bounds of human knowledge that on his discovery of magneto-electricity he abandoned the commercial work by which he had added to his small salary, in order to reserve all his energies for research. This financial loss was in part made up later by a pension of £300 a year from the British Government.
Faraday's parents were members of the obscure religious denomination of the Sandemanians, and Faraday himself, shortly after his marriage, at the age of thirty, joined the same sect, to which he adhered till his death. Religion and science he kept strictly apart, believing that the data of science were of an entirely different nature from the direct communications between God and the soul on which his religious faith was based.
The discoveries made by Faraday were so numerous, and often demand so detailed a knowledge of chemistry and physics before they can be understood, that it is impossible to attempt to describe or even enumerate them here. Among the most important are the discovery of magneto-electric induction, of the law of electro-chemical decomposition, of the magnetization of light, and of diamagnetism. Round each of these are grouped numbers of derivative but still highly important additions to scientific knowledge, and together they form so vast an achievement as to lead his successor, Tyndall, to say, “Taking him for all and all, I think it will be conceded that Michael Faraday was the greatest experimental philosopher the world has ever seen; and I will add the opinion, that the progress of future research will tend, not to dim or to diminish, but to enhance and glorify the labours of this mighty investigator.”
In spite of the highly technical nature of his work in research, Faraday was remarkably gifted as an expounder of science to popular audiences; and his lectures at the Royal Institution, especially those to younger audiences, were justly famous. The following example is a classic in the department of clear and fascinating scientific exposition.
THE FORCES OF MATTER
BY
MICHAEL FARADAY